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A novel chimeric amine dehydrogenase shows altered 

substrate specificity compared to its parent enzymes 

  

B. R. Bommarius,
a
 M Schürmann

b
 and A. S. Bommarius 

a,c 

We created a novel chimeric amine dehydrogenase (AmDH) 

via domain shuffling of two parent AmDHs (‘L- and F-

AmDH’), which in turn had been generated from leucine and 

phenylalanine DH, respectively. Unlike the parent proteins, 

the chimeric AmDH (‘cFL-AmDH’) catalyzes the amination 

of acetophenone to (R)-methylbenzylamine and adamantly-

methylketone to adamantylethylamine. 

Enantiomerically pure amines are sought-after building blocks of 

active pharmaceutical ingredients (APIs) in pharma, as exemplified 

by sitagliptin (Januvia®), rasagiline (Azilect®), and oseltamivir 

(Tamiflu®). Sitagliptin has recently been made accessible via 

transaminase catalysis (1). Even more recently, our lab developed 

direct amination of ketones with NH3, catalyzed by amine 

dehydrogenases  (AmDHs) with different substrate specificities from 

either leucine DH (‘L-AmDH’)(2) or phenylalanine DH (‘F-

AmDH’) (3). However, neither L- nor F-AmDH can convert 

benzylic ketones with appreciable activity. 

 

Based on similar results in amino acid dehydrogenases (AADHs) 

(4), we have employed domain shuffling to generate a new chimeric 

amine dehydrogenase,cFL1 -AmDH, from F-AmDH and L-AmDH 

using overlap PCR, which is described in detail in the Method 

section of the Supplementary Information. The previously described 

amine dehydrogenases from our lab served as the parental enzymes 

for this chimera. Generation of chimeric proteins via domain 

shuffling can lead to new enzymes with improved functionality or 

extended range of substrate specificity ((5); (6); (7); (8)). Residues 

1-149 were contributed by F-AmDH (F-AmDH numbering) and 140 

to the terminus 366 by the L-AmDH (L-AmDH numbering) (Figure 

1).  Thus, the cFL1-AmDH retains the ketone/amine binding pocket 

of F-AmDH and the cofactor binding domain from L-AmDH.  

 

Even though the authentic ketone binding domain from F-AmDH is 

present in the new enzyme, the chimeric amine dehydrogenase now 

accepts new substrates such as benzylic carbonyl substrates, in 

addition to maintaining the substrate specificity of its parent enzyme 

measured so far, F-AmDH (Table 1). Chiral GC analysis of cFL1-

AmDH substrates, such as p-F-phenylacetone (pFPA), with 

previously determined enantioselectivity with the parent enzyme F-

AmDH (3) exhibited the same enantioselectivity towards (R)-amine. 

Moreover, the chimeric enzyme features a shifted temperature 

profile towards higher temperatures with a temperature of optimum 

activity Topt of > 60°C compared to a Topt of 50°C for F-AmDH.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A. Model of the chimeric enzyme based on the structure of 

the related phenylalanine dehydrogenase from Rhodococcus sp. M4 

(1BW9) (green) (9) and leucine dehydrogenase from Bacillus 

sphaericus (1LEH), (blue) (10). 

B. Schematic outline of construction of the chimeric enzyme (green 

F-AmDH, dark blue L-AmDH, teal loop overlap). The amino acid 

sequence is listed in Figure S2.  

 

Compared to its parent enzymes, this new chimera converts benzylic 

ketones when probed for substrate activity at 60°C. Specifically, we 

demonstrate the novel transformation of acetophenone to (R)-

methylbenzylamine. In addition, conversion of the non-aromatic 

adamantylmethylketone to (R)-1-(1-adamantyl)ethylamine and the 

aliphatic methoxyacetone to (R)-methoxyisopropylamine (R)-

MOIPA was observed (Suppl. Figure 3).  Thus, we find that the 

cofactor binding domain in dehydrogenases can play a significant 

role in substrate specificity, reshaping and extending the substrate 
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pocket to allow conversion of aliphatic as well as aromatic and bulky 

ketones. 

 

cFL1-AmDH was characterized with respect to its kinetic pro-

perties (Table 2) as well as thermal behaviour (Suppl. Figure 4). 

 

Table 1: Substrate specificity of cFL1-AmDH 
(a) Substrate concentration = 20 mM, (b) 5 M NH4Cl buffer pH 9.5, (c) 

measured at 60°C, (d) measured at 25°C, n.d. = not determined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Kinetic properties of cFL1-AmDH 

pH 9.6, T = 60°C; data for NH
3

 and NADH measured with 15 mM p-FPA, 5 M formate 

buffer; data for p-FPA and NH
3 

measured with 200 µM NADH, all values apparent. 

 

Kinetic analysis revealed a reduced apparent KM value for 

pFPA and ammonia compared to its parent enzyme, F-AmDH 

(3), but also reduced kcat values.  

 
Figure 2: amino acid DH positions 270-280 

   

Sequence comparison of the amino acid DHs revealed two 

adjacent asparagines N270 and N271 (cFL numbering)(Figure 

2),.Upon analysis of the protein structure model we concluded 

that the 2nd asparagine might have additional influence on 

amination. This finding lead to the creation of cFL2-AmDH in 

which both asparagines are mutated to leucine (N270L/N271L).  

 

Table 3: Kinetic properties of cFL2-AmDH 

pH 9.6, T = 60°C; data for NH
3

 and NADH measured with 15 mM p-FPA, 5 M formate 

buffer; data for p-FPA and NH
3 

measured with 200 µM NADH, all values apparent. 
 

While the apparent kcat value for pFPA was indeed increased in 

cFL2- compared to cFL1-AmDH (Table 3), the value for 

acetophenone was decreased, indicating that N270/N271 both 

play a role in specific activity dependent on the substrate within 

the cFL2-AmDH.  

 

 Table 4: Thermal optima of different amine dehydrogenases 
a: (2), b: (3) 

AmDH L- F- cFL1- cFL2- 

Topt (°C) 50a 50b >80 70 

 

As mentioned before, domain shuffling of two related amine 

dehydrogenases L- and F-AmDH resulted in an altered thermal 

profile (Table 4). cFL1-AmDH is hardly active at 30°C, starts 

to exhibit good activity at 60°C and stays active beyond 70°C, 

(at > 70oC, cofactor stability starts to be impaired and our UV-

VIS instrument reaches its limitations (Suppl. Figure 4, for 

details see Method section of Supplementary Information as 

well)), whereas cFL2-AmDH reaches its temperature of 

maximum activity Topt at 70°C. The apparent activation 

energies Ea,app for acetophenone and p-F-phenylacetone with 

cFL1-AmDH were determined to be 32.7 and 48.7 kJ/mol, 

respectively, (35 kJ/mol with cFL2-AmDH for p-F-

phenylacetone), corresponding to 16.5, 10.9, and 15.4oC 

temperature increases, respectively, for doubling activity. cFL1-

AmDH at 45 and 55oC (Figure S5 and Table S6) was found to 

be very stable (t1/2 > 500 min); only at 70oC does half-life 

decrease to 40 min.   

Conclusions  

We find that the cofactor binding domain in amine dehydrogenases 

can play a significant role in ketone specificity and that domain 

shuffling can i) alter substrate specificity at comparable kinetic 

properties to the parents and ii) strongly improve thermal activity.  
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